Feature importance in data drift
How to show feature importance in Data Drift evaluations.
Code example
Compute feature importances
Pass your own importances
Last updated
How to show feature importance in Data Drift evaluations.
Last updated
report = Report(metrics = [
DataDriftTable(feature_importance=True)
])report = Report(metrics = [
DataDriftTable(feature_importance=True)
])
report.run(reference_data=reference,
current_data=current.loc['2011-01-29 00:00:00':'2011-02-07 23:00:00'],
column_mapping=column_mapping,
additional_data = {'current_feature_importance':
dict(map(lambda i,j : (i,j), numerical_features + categorical_features, regressor.feature_importances_))
}
)