LogoLogo
HomeBlogGitHub
latest
latest
  • New DOCS
  • What is Evidently?
  • Get Started
    • Evidently Cloud
      • Quickstart - LLM tracing
      • Quickstart - LLM evaluations
      • Quickstart - Data and ML checks
      • Quickstart - No-code evaluations
    • Evidently OSS
      • OSS Quickstart - LLM evals
      • OSS Quickstart - Data and ML monitoring
  • Presets
    • All Presets
    • Data Drift
    • Data Quality
    • Target Drift
    • Regression Performance
    • Classification Performance
    • NoTargetPerformance
    • Text Evals
    • Recommender System
  • Tutorials and Examples
    • All Tutorials
    • Tutorial - Tracing
    • Tutorial - Reports and Tests
    • Tutorial - Data & ML Monitoring
    • Tutorial - LLM Evaluation
    • Self-host ML Monitoring
    • LLM as a judge
    • LLM Regression Testing
  • Setup
    • Installation
    • Evidently Cloud
    • Self-hosting
  • User Guide
    • 📂Projects
      • Projects overview
      • Manage Projects
    • 📶Tracing
      • Tracing overview
      • Set up tracing
    • 🔢Input data
      • Input data overview
      • Column mapping
      • Data for Classification
      • Data for Recommendations
      • Load data to pandas
    • 🚦Tests and Reports
      • Reports and Tests Overview
      • Get a Report
      • Run a Test Suite
      • Evaluate Text Data
      • Output formats
      • Generate multiple Tests or Metrics
      • Run Evidently on Spark
    • 📊Evaluations
      • Evaluations overview
      • Generate snapshots
      • Run no code evals
    • 🔎Monitoring
      • Monitoring overview
      • Batch monitoring
      • Collector service
      • Scheduled evaluations
      • Send alerts
    • 📈Dashboard
      • Dashboard overview
      • Pre-built Tabs
      • Panel types
      • Adding Panels
    • 📚Datasets
      • Datasets overview
      • Work with Datasets
    • 🛠️Customization
      • Data drift parameters
      • Embeddings drift parameters
      • Feature importance in data drift
      • Text evals with LLM-as-judge
      • Text evals with HuggingFace
      • Add a custom text descriptor
      • Add a custom drift method
      • Add a custom Metric or Test
      • Customize JSON output
      • Show raw data in Reports
      • Add text comments to Reports
      • Change color schema
    • How-to guides
  • Reference
    • All tests
    • All metrics
      • Ranking metrics
    • Data drift algorithm
    • API Reference
      • evidently.calculations
        • evidently.calculations.stattests
      • evidently.metrics
        • evidently.metrics.classification_performance
        • evidently.metrics.data_drift
        • evidently.metrics.data_integrity
        • evidently.metrics.data_quality
        • evidently.metrics.regression_performance
      • evidently.metric_preset
      • evidently.options
      • evidently.pipeline
      • evidently.renderers
      • evidently.report
      • evidently.suite
      • evidently.test_preset
      • evidently.test_suite
      • evidently.tests
      • evidently.utils
  • Integrations
    • Integrations
      • Evidently integrations
      • Notebook environments
      • Evidently and Airflow
      • Evidently and MLflow
      • Evidently and DVCLive
      • Evidently and Metaflow
  • SUPPORT
    • Migration
    • Contact
    • F.A.Q.
    • Telemetry
    • Changelog
  • GitHub Page
  • Website
Powered by GitBook
On this page
  • Code example
  • Default
  • Non-aggregated plots for Reports
  • Non-aggregated plots for Metrics
  1. User Guide
  2. Customization

Show raw data in Reports

How to change data aggregation in plots.

PreviousCustomize JSON outputNextAdd text comments to Reports

Last updated 1 month ago

You are looking at the old Evidently documentation: this API is available with versions 0.6.7 or lower. Check the newer docs version .

Pre-requisites:

  • You know how to generate Reports with default parameters.

  • You know how to pass custom parameters for Reports or Metrics.

Code example

You can refer to an example How-to-notebook:

Default

Evidently Reports include visualizations, such as plotting values over time, which are aggregated by default. This keeps Reports size manageable, even with millions of evaluated rows.

For example, you can create a custom Report:

report = Report(metrics=[
    RegressionPredictedVsActualScatter(),
    RegressionPredictedVsActualPlot()
])
report.run(reference_data=housing_ref, current_data=housing_cur)
report

Here is how the Scatter Plot in this Report will look:

This does not affect Test Suites. All visualizations in Test Suites are already aggregated.

Non-aggregated plots for Reports

If you prefer to see raw data plots (individual prediction points), you can enable this option. This will store raw data points inside the Report.

To see non-aggregated plots, set the raw_data parameter as True in the render options.

You can set it on the Report level:

report = Report(
    metrics=[
      RegressionPredictedVsActualScatter(),
      RegressionPredictedVsActualPlot()
    ],
    options={"render": {"raw_data": True}}
  )
report.run(reference_data=housing_ref, current_data=housing_cur)
report

All plots in the Report will be non-aggregated. Here is how the Scatter Plot in this Report will look:

Consider the data size. We recommend setting this option for smaller datasets or when you apply sampling. With non-aggregated plots, the HTML will contain all the data on individual data points. For large datasets this will result in a very large Report and can make the plots unreadable.

Raw data is not available on Spark. If you run the computations using Spark, the raw data option is not available.

Non-aggregated plots for Metrics

If you want to generate non-aggregated plots only for some visualizations, you can pass the option to the chosen Metrics:

report = Report(
    metrics=[
      RegressionPredictedVsActualScatter(options={"render": {"raw_data": True}}),
      RegressionPredictedVsActualPlot()
    ],
  )
report.run(reference_data=housing_ref, current_data=housing_cur)
report
🛠️
here
evidently/examples/how_to_questions/how_to_use_aggregated_data_option.ipynb at ad71e132d59ac3a84fce6cf27bd50b12b10d9137 · evidentlyai/evidentlyGitHub
Logo
RegressionPredictedVsActualScatter()
RegressionPredictedVsActualScatter()