LogoLogo
HomeBlogGitHub
latest
latest
  • New DOCS
  • What is Evidently?
  • Get Started
    • Evidently Cloud
      • Quickstart - LLM tracing
      • Quickstart - LLM evaluations
      • Quickstart - Data and ML checks
      • Quickstart - No-code evaluations
    • Evidently OSS
      • OSS Quickstart - LLM evals
      • OSS Quickstart - Data and ML monitoring
  • Presets
    • All Presets
    • Data Drift
    • Data Quality
    • Target Drift
    • Regression Performance
    • Classification Performance
    • NoTargetPerformance
    • Text Evals
    • Recommender System
  • Tutorials and Examples
    • All Tutorials
    • Tutorial - Tracing
    • Tutorial - Reports and Tests
    • Tutorial - Data & ML Monitoring
    • Tutorial - LLM Evaluation
    • Self-host ML Monitoring
    • LLM as a judge
    • LLM Regression Testing
  • Setup
    • Installation
    • Evidently Cloud
    • Self-hosting
  • User Guide
    • 📂Projects
      • Projects overview
      • Manage Projects
    • 📶Tracing
      • Tracing overview
      • Set up tracing
    • 🔢Input data
      • Input data overview
      • Column mapping
      • Data for Classification
      • Data for Recommendations
      • Load data to pandas
    • 🚦Tests and Reports
      • Reports and Tests Overview
      • Get a Report
      • Run a Test Suite
      • Evaluate Text Data
      • Output formats
      • Generate multiple Tests or Metrics
      • Run Evidently on Spark
    • 📊Evaluations
      • Evaluations overview
      • Generate snapshots
      • Run no code evals
    • 🔎Monitoring
      • Monitoring overview
      • Batch monitoring
      • Collector service
      • Scheduled evaluations
      • Send alerts
    • 📈Dashboard
      • Dashboard overview
      • Pre-built Tabs
      • Panel types
      • Adding Panels
    • 📚Datasets
      • Datasets overview
      • Work with Datasets
    • 🛠️Customization
      • Data drift parameters
      • Embeddings drift parameters
      • Feature importance in data drift
      • Text evals with LLM-as-judge
      • Text evals with HuggingFace
      • Add a custom text descriptor
      • Add a custom drift method
      • Add a custom Metric or Test
      • Customize JSON output
      • Show raw data in Reports
      • Add text comments to Reports
      • Change color schema
    • How-to guides
  • Reference
    • All tests
    • All metrics
      • Ranking metrics
    • Data drift algorithm
    • API Reference
      • evidently.calculations
        • evidently.calculations.stattests
      • evidently.metrics
        • evidently.metrics.classification_performance
        • evidently.metrics.data_drift
        • evidently.metrics.data_integrity
        • evidently.metrics.data_quality
        • evidently.metrics.regression_performance
      • evidently.metric_preset
      • evidently.options
      • evidently.pipeline
      • evidently.renderers
      • evidently.report
      • evidently.suite
      • evidently.test_preset
      • evidently.test_suite
      • evidently.tests
      • evidently.utils
  • Integrations
    • Integrations
      • Evidently integrations
      • Notebook environments
      • Evidently and Airflow
      • Evidently and MLflow
      • Evidently and DVCLive
      • Evidently and Metaflow
  • SUPPORT
    • Migration
    • Contact
    • F.A.Q.
    • Telemetry
    • Changelog
  • GitHub Page
  • Website
Powered by GitBook
On this page
  • Submodules
  • column_drift_metric module
  • class ColumnDriftMetric(column_name: str, stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, stattest_threshold: Optional[float] = None)
  • class ColumnDriftMetricRenderer(color_options: Optional[ColorOptions] = None)
  • class ColumnDriftMetricResults(column_name: str, column_type: str, stattest_name: str, stattest_threshold: float, drift_score: Union[float, int], drift_detected: bool, current_distribution: Distribution, reference_distribution: Distribution, current_scatter: Optional[Dict[str, list]], x_name: Optional[str], plot_shape: Optional[Dict[str, float]])
  • column_value_plot module
  • class ColumnValuePlot(column_name: str)
  • class ColumnValuePlotRenderer(color_options: Optional[ColorOptions] = None)
  • class ColumnValuePlotResults(column_name: str, datetime_column_name: Optional[str], current_scatter: pandas.core.frame.DataFrame, reference_scatter: pandas.core.frame.DataFrame)
  • data_drift_table module
  • class DataDriftTable(columns: Optional[List[str]] = None, stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, cat_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, num_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, per_column_stattest: Optional[Dict[str, Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]]] = None, stattest_threshold: Optional[float] = None, cat_stattest_threshold: Optional[float] = None, num_stattest_threshold: Optional[float] = None, per_column_stattest_threshold: Optional[Dict[str, float]] = None)
  • class DataDriftTableRenderer(color_options: Optional[ColorOptions] = None)
  • class DataDriftTableResults(number_of_columns: int, number_of_drifted_columns: int, share_of_drifted_columns: float, dataset_drift: bool, drift_by_columns: Dict[str, ColumnDataDriftMetrics], dataset_columns: DatasetColumns)
  • dataset_drift_metric module
  • class DataDriftMetricsRenderer(color_options: Optional[ColorOptions] = None)
  • class DatasetDriftMetric(columns: Optional[List[str]] = None, drift_share: float = 0.5, stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, cat_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, num_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, per_column_stattest: Optional[Dict[str, Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]]] = None, stattest_threshold: Optional[float] = None, cat_stattest_threshold: Optional[float] = None, num_stattest_threshold: Optional[float] = None, per_column_stattest_threshold: Optional[Dict[str, float]] = None)
  • class DatasetDriftMetricResults(drift_share: float, number_of_columns: int, number_of_drifted_columns: int, share_of_drifted_columns: float, dataset_drift: bool)
  • target_by_features_table module
  • class TargetByFeaturesTable(columns: Optional[List[str]] = None)
  • class TargetByFeaturesTableRenderer(color_options: Optional[ColorOptions] = None)
  • class TargetByFeaturesTableResults(current_plot_data: pandas.core.frame.DataFrame, reference_plot_data: pandas.core.frame.DataFrame, target_name: Optional[str], curr_predictions: Optional[PredictionData], ref_predictions: Optional[PredictionData], columns: List[str], task: str)
  1. Reference
  2. API Reference
  3. evidently.metrics

evidently.metrics.data_drift

Previousevidently.metrics.classification_performanceNextevidently.metrics.data_integrity

Last updated 2 months ago

Submodules

column_drift_metric module

class ColumnDriftMetric(column_name: str, stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]] = None, stattest_threshold: Optional[float] = None)

Bases: [ColumnDriftMetricResults]

Calculate drift metric for a column

Attributes:

column_name : str

stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]

stattest_threshold : Optional[float]

Methods:

calculate(data: )

get_parameters()

class ColumnDriftMetricRenderer(color_options: Optional[] = None)

Attributes:

Methods:

render_html(obj: ColumnDriftMetric)

render_json(obj: ColumnDriftMetric)

Bases: object

Attributes:

column_name : str

column_type : str

current_scatter : Optional[Dict[str, list]]

drift_detected : bool

drift_score : Union[float, int]

plot_shape : Optional[Dict[str, float]]

stattest_name : str

stattest_threshold : float

x_name : Optional[str]

column_value_plot module

class ColumnValuePlot(column_name: str)

Attributes:

column_name : str

Methods:

Attributes:

Methods:

render_html(obj: ColumnValuePlot)

render_json(obj: ColumnValuePlot)

class ColumnValuePlotResults(column_name: str, datetime_column_name: Optional[str], current_scatter: pandas.core.frame.DataFrame, reference_scatter: pandas.core.frame.DataFrame)

Bases: object

Attributes:

column_name : str

current_scatter : DataFrame

datetime_column_name : Optional[str]

reference_scatter : DataFrame

data_drift_table module

Attributes:

columns : Optional[List[str]]

Methods:

get_parameters()

Attributes:

Methods:

render_html(obj: DataDriftTable)

render_json(obj: DataDriftTable)

Bases: object

Attributes:

dataset_drift : bool

number_of_columns : int

number_of_drifted_columns : int

share_of_drifted_columns : float

dataset_drift_metric module

Attributes:

Methods:

render_html(obj: DatasetDriftMetric)

render_json(obj: DatasetDriftMetric)

Attributes:

columns : Optional[List[str]]

drift_share : float

Methods:

get_parameters()

class DatasetDriftMetricResults(drift_share: float, number_of_columns: int, number_of_drifted_columns: int, share_of_drifted_columns: float, dataset_drift: bool)

Bases: object

Attributes:

dataset_drift : bool

drift_share : float

number_of_columns : int

number_of_drifted_columns : int

share_of_drifted_columns : float

target_by_features_table module

class TargetByFeaturesTable(columns: Optional[List[str]] = None)

Attributes:

columns : Optional[List[str]]

Methods:

Attributes:

Methods:

render_html(obj: TargetByFeaturesTable)

render_json(obj: TargetByFeaturesTable)

Bases: object

Attributes:

columns : List[str]

current_plot_data : DataFrame

reference_plot_data : DataFrame

target_name : Optional[str]

task : str

Bases:

color_options :

class ColumnDriftMetricResults(column_name: str, column_type: str, stattest_name: str, stattest_threshold: float, drift_score: Union[float, int], drift_detected: bool, current_distribution: , reference_distribution: , current_scatter: Optional[Dict[str, list]], x_name: Optional[str], plot_shape: Optional[Dict[str, float]])

current_distribution :

reference_distribution :

Bases: [ColumnValuePlotResults]

calculate(data: )

class ColumnValuePlotRenderer(color_options: Optional[] = None)

Bases:

color_options :

class DataDriftTable(columns: Optional[List[str]] = None, stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]] = None, cat_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]] = None, num_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]] = None, per_column_stattest: Optional[Dict[str, Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]] = None, stattest_threshold: Optional[float] = None, cat_stattest_threshold: Optional[float] = None, num_stattest_threshold: Optional[float] = None, per_column_stattest_threshold: Optional[Dict[str, float]] = None)

Bases: [DataDriftTableResults]

options :

calculate(data: )

class DataDriftTableRenderer(color_options: Optional[] = None)

Bases:

color_options :

class DataDriftTableResults(number_of_columns: int, number_of_drifted_columns: int, share_of_drifted_columns: float, dataset_drift: bool, drift_by_columns: Dict[str, ], dataset_columns: )

dataset_columns :

drift_by_columns : Dict[str, ]

class DataDriftMetricsRenderer(color_options: Optional[] = None)

Bases:

color_options :

class DatasetDriftMetric(columns: Optional[List[str]] = None, drift_share: float = 0.5, stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]] = None, cat_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]] = None, num_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]] = None, per_column_stattest: Optional[Dict[str, Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]] = None, stattest_threshold: Optional[float] = None, cat_stattest_threshold: Optional[float] = None, num_stattest_threshold: Optional[float] = None, per_column_stattest_threshold: Optional[Dict[str, float]] = None)

Bases: [DatasetDriftMetricResults]

options :

calculate(data: )

Bases: [TargetByFeaturesTableResults]

calculate(data: )

class TargetByFeaturesTableRenderer(color_options: Optional[] = None)

Bases:

color_options :

class TargetByFeaturesTableResults(current_plot_data: pandas.core.frame.DataFrame, reference_plot_data: pandas.core.frame.DataFrame, target_name: Optional[str], curr_predictions: Optional[], ref_predictions: Optional[], columns: List[str], task: str)

curr_predictions : Optional[]

ref_predictions : Optional[]

ColorOptions
ColorOptions
ColorOptions
DataDriftOptions
ColorOptions
ColorOptions
ColorOptions
ColorOptions
DataDriftOptions
ColorOptions
ColorOptions
Distribution
Distribution
Distribution
Distribution
DatasetColumns
ColorOptions
DatasetColumns
StatTest
StatTest
StatTest
StatTest
StatTest
StatTest
StatTest
StatTest
StatTest
StatTest
MetricRenderer
MetricRenderer
MetricRenderer
MetricRenderer
MetricRenderer
Metric
InputData
Metric
InputData
Metric
InputData
Metric
InputData
Metric
InputData
ColumnDataDriftMetrics
ColumnDataDriftMetrics
PredictionData
PredictionData
PredictionData
PredictionData