evidently.metrics.regression_performance
Last updated
Last updated
Bases: [RegressionAbsPercentageErrorPlotResults
]
calculate(data: )
Bases:
color_options :
render_html(obj: RegressionAbsPercentageErrorPlot)
render_json(obj: RegressionAbsPercentageErrorPlot)
Bases: object
current_scatter : Dict[str, Series]
reference_scatter : Optional[Dict[str, Series]]
x_name : str
TOP_ERROR_DEFAULT = 0.05
TOP_ERROR_MAX = 0.5
TOP_ERROR_MIN = 0
columns : Optional[List[str]]
top_error : float
render_html(obj: RegressionErrorBiasTable)
render_json(obj: RegressionErrorBiasTable)
Bases: object
cat_feature_names : List[str]
columns : Optional[List[str]] = None
current_plot_data : DataFrame
error_bias : Optional[dict] = None
num_feature_names : List[str]
prediction_name : str
reference_plot_data : Optional[DataFrame]
target_name : str
top_error : float
render_html(obj: RegressionErrorDistribution)
render_json(obj: RegressionErrorDistribution)
Bases: object
current_bins : DataFrame
reference_bins : Optional[DataFrame]
render_html(obj: RegressionErrorPlot)
render_json(obj: RegressionErrorPlot)
Bases: object
current_scatter : Dict[str, Series]
reference_scatter : Optional[Dict[str, Series]]
x_name : str
render_html(obj: RegressionErrorNormality)
render_json(obj: RegressionErrorNormality)
Bases: object
current_error : Series
reference_error : Optional[Series]
render_html(obj: RegressionPredictedVsActualPlot)
render_json(obj: RegressionPredictedVsActualPlot)
Bases: object
current_scatter : Dict[str, Series]
reference_scatter : Optional[Dict[str, Series]]
x_name : str
render_html(obj: RegressionPredictedVsActualScatter)
render_json(obj: RegressionPredictedVsActualScatter)
Bases: object
current_scatter : Dict[str, Series]
reference_scatter : Optional[Dict[str, Series]]
quality_metric : RegressionQualityMetric
render_html(obj: RegressionDummyMetric)
render_json(obj: RegressionDummyMetric)
Bases: object
abs_error_max : Optional[float] = None
abs_error_max_by_ref : Optional[float] = None
abs_error_max_default : float
mean_abs_error : Optional[float] = None
mean_abs_error_by_ref : Optional[float] = None
mean_abs_error_default : float
mean_abs_perc_error : Optional[float] = None
mean_abs_perc_error_by_ref : Optional[float] = None
mean_abs_perc_error_default : float
rmse : Optional[float] = None
rmse_by_ref : Optional[float] = None
rmse_default : float
get_parameters()
render_html(obj: RegressionPerformanceMetrics)
render_json(obj: RegressionPerformanceMetrics)
Bases: object
abs_error_max : float
abs_error_max_default : float
abs_error_max_ref : Optional[float] = None
abs_error_std : float
abs_perc_error_std : float
error_bias : Optional[dict] = None
error_normality : dict
error_std : float
hist_for_plot : Dict[str, Series]
me_default_sigma : float
me_hist_for_plot : Dict[str, Union[Series, DataFrame]]
mean_abs_error : float
mean_abs_error_default : float
mean_abs_error_ref : Optional[float] = None
mean_abs_perc_error : float
mean_abs_perc_error_default : float
mean_abs_perc_error_ref : Optional[float] = None
mean_error : float
mean_error_ref : Optional[float] = None
r2_score : float
r2_score_ref : Optional[float] = None
rmse : float
rmse_default : float
rmse_ref : Optional[float] = None
underperformance : dict
underperformance_ref : Optional[dict] = None
vals_for_plots : Dict[str, Dict[str, Series]]
render_html(obj: RegressionQualityMetric)
render_json(obj: RegressionQualityMetric)
Bases: object
abs_error_max : float
abs_error_max_default : float
abs_error_max_ref : Optional[float] = None
abs_error_std : float
abs_error_std_ref : Optional[float] = None
abs_perc_error_std : float
abs_perc_error_std_ref : Optional[float] = None
error_bias : Optional[dict] = None
error_normality : dict
error_std : float
error_std_ref : Optional[float] = None
hist_for_plot : Dict[str, Series]
me_default_sigma : float
me_hist_for_plot : Dict[str, Series]
mean_abs_error : float
mean_abs_error_default : float
mean_abs_error_ref : Optional[float] = None
mean_abs_perc_error : float
mean_abs_perc_error_default : float
mean_abs_perc_error_ref : Optional[float] = None
mean_error : float
mean_error_ref : Optional[float] = None
r2_score : float
r2_score_ref : Optional[float] = None
rmse : float
rmse_default : float
rmse_ref : Optional[float] = None
underperformance : dict
underperformance_ref : Optional[dict] = None
vals_for_plots : Dict[str, Dict[str, Series]]
render_html(obj: RegressionTopErrorMetric)
render_json(obj: RegressionTopErrorMetric)
Bases: object
curr_mean_err_per_group : Dict[str, Dict[str, float]]
curr_scatter : Dict[str, Dict[str, Series]]
ref_mean_err_per_group : Optional[Dict[str, Dict[str, float]]]
ref_scatter : Optional[Dict[str, Dict[str, Series]]]
Bases: [RegressionErrorBiasTableResults
]
calculate(data: )
Bases:
color_options :
Bases: [RegressionErrorDistributionResults
]
calculate(data: )
Bases:
color_options :
Bases: [RegressionErrorPlotResults
]
calculate(data: )
Bases:
color_options :
Bases: [RegressionErrorNormalityResults
]
calculate(data: )
Bases:
color_options :
Bases: [RegressionPredictedVsActualPlotResults
]
calculate(data: )
Bases:
color_options :
Bases: [RegressionPredictedVsActualScatterResults
]
calculate(data: )
Bases:
color_options :
Bases: [RegressionDummyMetricResults
]
calculate(data: )
Bases:
color_options :
Bases: [RegressionPerformanceMetricsResults
]
calculate(data: )
Bases:
color_options :
columns :
Bases: [RegressionQualityMetricResults
]
calculate(data: )
Bases:
color_options :
columns :
Bases: [RegressionTopErrorMetricResults
]
calculate(data: )
Bases:
color_options :