evidently.metrics.data_integrity
Submodules
column_missing_values_metric module
class ColumnMissingValues(number_of_rows: int, different_missing_values: Dict[Any, int], number_of_different_missing_values: int, number_of_missing_values: int, share_of_missing_values: float)
Attributes:
class ColumnMissingValuesMetric(column_name: str, missing_values: Optional[list] = None, replace: bool = True)
Attributes:
Methods:
class ColumnMissingValuesMetricRenderer(color_options: Optional[ColorOptions] = None)
Attributes:
Methods:
class ColumnMissingValuesMetricResult(column_name: str, current: ColumnMissingValues, reference: Optional[ColumnMissingValues] = None)
Attributes:
column_regexp_metric module
class ColumnRegExpMetric(column_name: str, reg_exp: str, top: int = 10)
Attributes:
Methods:
class ColumnRegExpMetricRenderer(color_options: Optional[ColorOptions] = None)
Attributes:
Methods:
class DataIntegrityValueByRegexpMetricResult(column_name: str, reg_exp: str, top: int, current: DataIntegrityValueByRegexpStat, reference: Optional[DataIntegrityValueByRegexpStat] = None)
Attributes:
class DataIntegrityValueByRegexpStat(number_of_matched: int, number_of_not_matched: int, number_of_rows: int, table_of_matched: Dict[str, int], table_of_not_matched: Dict[str, int])
Attributes:
column_summary_metric module
class CategoricalCharacteristics(number_of_rows: int, count: int, unique: Optional[int], unique_percentage: Optional[float], most_common: Optional[object], most_common_percentage: Optional[float], missing: Optional[int], missing_percentage: Optional[float], new_in_current_values_count: Optional[int] = None, unused_in_current_values_count: Optional[int] = None)
Attributes:
class ColumnSummary(column_name: str, column_type: str, reference_characteristics: Union[NumericCharacteristics, CategoricalCharacteristics, DatetimeCharacteristics, NoneType], current_characteristics: Union[NumericCharacteristics, CategoricalCharacteristics, DatetimeCharacteristics], plot_data: DataQualityPlot)
Attributes:
class ColumnSummaryMetric(column_name: str)
Methods:
class ColumnSummaryMetricRenderer(color_options: Optional[ColorOptions] = None)
Attributes:
Methods:
class DataByTarget(data_for_plots: Dict[str, Dict[str, Union[list, pandas.core.frame.DataFrame]]], target_name: str, target_type: str)
Attributes:
class DataInTime(data_for_plots: Dict[str, pandas.core.frame.DataFrame], freq: str, datetime_name: str)
Attributes:
class DataQualityPlot(bins_for_hist: Dict[str, pandas.core.frame.DataFrame], data_in_time: Optional[DataInTime], data_by_target: Optional[DataByTarget], counts_of_values: Optional[Dict[str, pandas.core.frame.DataFrame]])
Attributes:
class DatetimeCharacteristics(number_of_rows: int, count: int, unique: Optional[int], unique_percentage: Optional[float], most_common: Optional[object], most_common_percentage: Optional[float], missing: Optional[int], missing_percentage: Optional[float], first: Optional[str], last: Optional[str])
Attributes:
class NumericCharacteristics(number_of_rows: int, count: int, mean: Union[float, int, NoneType], std: Union[float, int, NoneType], min: Union[float, int, NoneType], p25: Union[float, int, NoneType], p50: Union[float, int, NoneType], p75: Union[float, int, NoneType], max: Union[float, int, NoneType], unique: Optional[int], unique_percentage: Optional[float], missing: Optional[int], missing_percentage: Optional[float], infinite_count: Optional[int], infinite_percentage: Optional[float], most_common: Union[float, int, NoneType], most_common_percentage: Optional[float])
Attributes:
dataset_missing_values_metric module
class DatasetMissingValues(different_missing_values: Dict[Any, int], number_of_different_missing_values: int, different_missing_values_by_column: Dict[str, Dict[Any, int]], number_of_different_missing_values_by_column: Dict[str, int], number_of_missing_values: int, share_of_missing_values: float, number_of_missing_values_by_column: Dict[str, int], share_of_missing_values_by_column: Dict[str, float], number_of_rows: int, number_of_rows_with_missing_values: int, share_of_rows_with_missing_values: float, number_of_columns: int, columns_with_missing_values: List[str], number_of_columns_with_missing_values: int, share_of_columns_with_missing_values: float)
Attributes:
class DatasetMissingValuesMetric(missing_values: Optional[list] = None, replace: bool = True)
Attributes:
Methods:
class DatasetMissingValuesMetricRenderer(color_options: Optional[ColorOptions] = None)
Attributes:
Methods:
class DatasetMissingValuesMetricResult(current: DatasetMissingValues, reference: Optional[DatasetMissingValues] = None)
Attributes:
dataset_summary_metric module
class DatasetSummary(target: Optional[str], prediction: Optional[Union[str, Sequence[str]]], date_column: Optional[str], id_column: Optional[str], number_of_columns: int, number_of_rows: int, number_of_missing_values: int, number_of_categorical_columns: int, number_of_numeric_columns: int, number_of_datetime_columns: int, number_of_constant_columns: int, number_of_almost_constant_columns: int, number_of_duplicated_columns: int, number_of_almost_duplicated_columns: int, number_of_empty_rows: int, number_of_empty_columns: int, number_of_duplicated_rows: int, columns_type: dict, nans_by_columns: dict, number_uniques_by_columns: dict)
Attributes:
class DatasetSummaryMetric(almost_duplicated_threshold: float = 0.95, almost_constant_threshold: float = 0.95)
Attributes:
Methods:
class DatasetSummaryMetricRenderer(color_options: Optional[ColorOptions] = None)
Attributes:
Methods:
class DatasetSummaryMetricResult(almost_duplicated_threshold: float, current: DatasetSummary, reference: Optional[DatasetSummary] = None)
Attributes:
Last updated