LogoLogo
HomeBlogGitHub
latest
latest
  • New DOCS
  • What is Evidently?
  • Get Started
    • Evidently Cloud
      • Quickstart - LLM tracing
      • Quickstart - LLM evaluations
      • Quickstart - Data and ML checks
      • Quickstart - No-code evaluations
    • Evidently OSS
      • OSS Quickstart - LLM evals
      • OSS Quickstart - Data and ML monitoring
  • Presets
    • All Presets
    • Data Drift
    • Data Quality
    • Target Drift
    • Regression Performance
    • Classification Performance
    • NoTargetPerformance
    • Text Evals
    • Recommender System
  • Tutorials and Examples
    • All Tutorials
    • Tutorial - Tracing
    • Tutorial - Reports and Tests
    • Tutorial - Data & ML Monitoring
    • Tutorial - LLM Evaluation
    • Self-host ML Monitoring
    • LLM as a judge
    • LLM Regression Testing
  • Setup
    • Installation
    • Evidently Cloud
    • Self-hosting
  • User Guide
    • 📂Projects
      • Projects overview
      • Manage Projects
    • 📶Tracing
      • Tracing overview
      • Set up tracing
    • 🔢Input data
      • Input data overview
      • Column mapping
      • Data for Classification
      • Data for Recommendations
      • Load data to pandas
    • 🚦Tests and Reports
      • Reports and Tests Overview
      • Get a Report
      • Run a Test Suite
      • Evaluate Text Data
      • Output formats
      • Generate multiple Tests or Metrics
      • Run Evidently on Spark
    • 📊Evaluations
      • Evaluations overview
      • Generate snapshots
      • Run no code evals
    • 🔎Monitoring
      • Monitoring overview
      • Batch monitoring
      • Collector service
      • Scheduled evaluations
      • Send alerts
    • 📈Dashboard
      • Dashboard overview
      • Pre-built Tabs
      • Panel types
      • Adding Panels
    • 📚Datasets
      • Datasets overview
      • Work with Datasets
    • 🛠️Customization
      • Data drift parameters
      • Embeddings drift parameters
      • Feature importance in data drift
      • Text evals with LLM-as-judge
      • Text evals with HuggingFace
      • Add a custom text descriptor
      • Add a custom drift method
      • Add a custom Metric or Test
      • Customize JSON output
      • Show raw data in Reports
      • Add text comments to Reports
      • Change color schema
    • How-to guides
  • Reference
    • All tests
    • All metrics
      • Ranking metrics
    • Data drift algorithm
    • API Reference
      • evidently.calculations
        • evidently.calculations.stattests
      • evidently.metrics
        • evidently.metrics.classification_performance
        • evidently.metrics.data_drift
        • evidently.metrics.data_integrity
        • evidently.metrics.data_quality
        • evidently.metrics.regression_performance
      • evidently.metric_preset
      • evidently.options
      • evidently.pipeline
      • evidently.renderers
      • evidently.report
      • evidently.suite
      • evidently.test_preset
      • evidently.test_suite
      • evidently.tests
      • evidently.utils
  • Integrations
    • Integrations
      • Evidently integrations
      • Notebook environments
      • Evidently and Airflow
      • Evidently and MLflow
      • Evidently and DVCLive
      • Evidently and Metaflow
  • SUPPORT
    • Migration
    • Contact
    • F.A.Q.
    • Telemetry
    • Changelog
  • GitHub Page
  • Website
Powered by GitBook
On this page
  • Submodules
  • column_correlations_metric module
  • class ColumnCorrelationsMetric(column_name: str)
  • class ColumnCorrelationsMetricRenderer(color_options: Optional[ColorOptions] = None)
  • class ColumnCorrelationsMetricResult(column_name: str, current: Dict[str, ColumnCorrelations], reference: Optional[Dict[str, ColumnCorrelations]] = None)
  • column_distribution_metric module
  • class ColumnDistributionMetric(column_name: str)
  • class ColumnDistributionMetricRenderer(color_options: Optional[ColorOptions] = None)
  • class ColumnDistributionMetricResult(column_name: str, current: Distribution, reference: Optional[Distribution] = None)
  • column_quantile_metric module
  • class ColumnQuantileMetric(column_name: str, quantile: float)
  • class ColumnQuantileMetricRenderer(color_options: Optional[ColorOptions] = None)
  • class ColumnQuantileMetricResult(column_name: str, quantile: float, current: float, current_distribution: Distribution, reference: Optional[float] = None, reference_distribution: Optional[Distribution] = None)
  • column_value_list_metric module
  • class ColumnValueListMetric(column_name: str, values: Optional[list] = None)
  • class ColumnValueListMetricRenderer(color_options: Optional[ColorOptions] = None)
  • class ColumnValueListMetricResult(column_name: str, values: List[Any], current: ValueListStat, reference: Optional[ValueListStat] = None)
  • class ValueListStat(number_in_list: int, number_not_in_list: int, share_in_list: float, share_not_in_list: float, values_in_list: Dict[Any, int], values_not_in_list: Dict[Any, int], rows_count: int)
  • column_value_range_metric module
  • class ColumnValueRangeMetric(column_name: str, left: Optional[Union[float, int]] = None, right: Optional[Union[float, int]] = None)
  • class ColumnValueRangeMetricRenderer(color_options: Optional[ColorOptions] = None)
  • class ColumnValueRangeMetricResult(column_name: str, left: Union[float, int], right: Union[float, int], current: ValuesInRangeStat, current_distribution: Distribution, reference: Optional[ValuesInRangeStat] = None, reference_distribution: Optional[Distribution] = None)
  • class ValuesInRangeStat(number_in_range: int, number_not_in_range: int, share_in_range: float, share_not_in_range: float, number_of_values: int)
  • dataset_correlations_metric module
  • class CorrelationStats(target_prediction_correlation: Optional[float] = None, abs_max_target_features_correlation: Optional[float] = None, abs_max_prediction_features_correlation: Optional[float] = None, abs_max_correlation: Optional[float] = None, abs_max_features_correlation: Optional[float] = None)
  • class DataQualityCorrelationMetricsRenderer(color_options: Optional[ColorOptions] = None)
  • class DatasetCorrelation(correlation: Dict[str, pandas.core.frame.DataFrame], stats: Dict[str, CorrelationStats])
  • class DatasetCorrelationsMetric()
  • class DatasetCorrelationsMetricResult(current: DatasetCorrelation, reference: Optional[DatasetCorrelation])
  • stability_metric module
  • class DataQualityStabilityMetric()
  • class DataQualityStabilityMetricRenderer(color_options: Optional[ColorOptions] = None)
  • class DataQualityStabilityMetricResult(number_not_stable_target: Optional[int] = None, number_not_stable_prediction: Optional[int] = None)
  1. Reference
  2. API Reference
  3. evidently.metrics

evidently.metrics.data_quality

Previousevidently.metrics.data_integrityNextevidently.metrics.regression_performance

Last updated 2 months ago

Submodules

column_correlations_metric module

class ColumnCorrelationsMetric(column_name: str)

Bases: [ColumnCorrelationsMetricResult]

Calculates correlations between the selected column and all the other columns. In the current and reference (if presented) datasets

Attributes:

column_name : str

Methods:

calculate(data: )

class ColumnCorrelationsMetricRenderer(color_options: Optional[] = None)

Bases:

Attributes:

color_options :

Methods:

render_html(obj: ColumnCorrelationsMetric)

render_json(obj: ColumnCorrelationsMetric)

Bases: object

Attributes:

column_name : str

column_distribution_metric module

class ColumnDistributionMetric(column_name: str)

Calculates distribution for the column

Attributes:

column_name : str

Methods:

Attributes:

Methods:

render_html(obj: ColumnDistributionMetric)

render_json(obj: ColumnDistributionMetric)

Bases: object

Attributes:

column_name : str

column_quantile_metric module

class ColumnQuantileMetric(column_name: str, quantile: float)

Calculates quantile with specified range

Attributes:

column_name : str

quantile : float

Methods:

Attributes:

Methods:

render_html(obj: ColumnQuantileMetric)

render_json(obj: ColumnQuantileMetric)

Bases: object

Attributes:

column_name : str

current : float

quantile : float

reference : Optional[float] = None

column_value_list_metric module

class ColumnValueListMetric(column_name: str, values: Optional[list] = None)

Calculates count and shares of values in the predefined values list

Attributes:

column_name : str

values : Optional[list]

Methods:

Attributes:

Methods:

render_html(obj: ColumnValueListMetric)

render_json(obj: ColumnValueListMetric)

class ColumnValueListMetricResult(column_name: str, values: List[Any], current: ValueListStat, reference: Optional[ValueListStat] = None)

Bases: object

Attributes:

column_name : str

current : ValueListStat

reference : Optional[ValueListStat] = None

values : List[Any]

class ValueListStat(number_in_list: int, number_not_in_list: int, share_in_list: float, share_not_in_list: float, values_in_list: Dict[Any, int], values_not_in_list: Dict[Any, int], rows_count: int)

Bases: object

Attributes:

number_in_list : int

number_not_in_list : int

rows_count : int

share_in_list : float

share_not_in_list : float

values_in_list : Dict[Any, int]

values_not_in_list : Dict[Any, int]

column_value_range_metric module

class ColumnValueRangeMetric(column_name: str, left: Optional[Union[float, int]] = None, right: Optional[Union[float, int]] = None)

Calculates count and shares of values in the predefined values range

Attributes:

column_name : str

left : Optional[Union[float, int]]

right : Optional[Union[float, int]]

Methods:

Attributes:

Methods:

render_html(obj: ColumnValueRangeMetric)

render_json(obj: ColumnValueRangeMetric)

Bases: object

Attributes:

column_name : str

current : ValuesInRangeStat

left : Union[float, int]

reference : Optional[ValuesInRangeStat] = None

right : Union[float, int]

class ValuesInRangeStat(number_in_range: int, number_not_in_range: int, share_in_range: float, share_not_in_range: float, number_of_values: int)

Bases: object

Attributes:

number_in_range : int

number_not_in_range : int

number_of_values : int

share_in_range : float

share_not_in_range : float

dataset_correlations_metric module

class CorrelationStats(target_prediction_correlation: Optional[float] = None, abs_max_target_features_correlation: Optional[float] = None, abs_max_prediction_features_correlation: Optional[float] = None, abs_max_correlation: Optional[float] = None, abs_max_features_correlation: Optional[float] = None)

Bases: object

Attributes:

abs_max_correlation : Optional[float] = None

abs_max_features_correlation : Optional[float] = None

abs_max_prediction_features_correlation : Optional[float] = None

abs_max_target_features_correlation : Optional[float] = None

target_prediction_correlation : Optional[float] = None

Attributes:

Methods:

render_html(obj: DatasetCorrelationsMetric)

render_json(obj: DatasetCorrelationsMetric)

class DatasetCorrelation(correlation: Dict[str, pandas.core.frame.DataFrame], stats: Dict[str, CorrelationStats])

Bases: object

Attributes:

correlation : Dict[str, DataFrame]

stats : Dict[str, CorrelationStats]

class DatasetCorrelationsMetric()

Calculate different correlations with target, predictions and features

Methods:

class DatasetCorrelationsMetricResult(current: DatasetCorrelation, reference: Optional[DatasetCorrelation])

Bases: object

Attributes:

current : DatasetCorrelation

reference : Optional[DatasetCorrelation]

stability_metric module

class DataQualityStabilityMetric()

Calculates stability by target and prediction

Methods:

Attributes:

Methods:

render_html(obj: DataQualityStabilityMetric)

render_json(obj: DataQualityStabilityMetric)

class DataQualityStabilityMetricResult(number_not_stable_target: Optional[int] = None, number_not_stable_prediction: Optional[int] = None)

Bases: object

Attributes:

number_not_stable_prediction : Optional[int] = None

number_not_stable_target : Optional[int] = None

class ColumnCorrelationsMetricResult(column_name: str, current: Dict[str, ], reference: Optional[Dict[str, ]] = None)

current : Dict[str, ]

reference : Optional[Dict[str, ]] = None

Bases: [ColumnDistributionMetricResult]

calculate(data: )

class ColumnDistributionMetricRenderer(color_options: Optional[] = None)

Bases:

color_options :

class ColumnDistributionMetricResult(column_name: str, current: , reference: Optional[] = None)

current :

reference : Optional[] = None

Bases: [ColumnQuantileMetricResult]

calculate(data: )

class ColumnQuantileMetricRenderer(color_options: Optional[] = None)

Bases:

color_options :

class ColumnQuantileMetricResult(column_name: str, quantile: float, current: float, current_distribution: , reference: Optional[float] = None, reference_distribution: Optional[] = None)

current_distribution :

reference_distribution : Optional[] = None

Bases: [ColumnValueListMetricResult]

calculate(data: )

class ColumnValueListMetricRenderer(color_options: Optional[] = None)

Bases:

color_options :

Bases: [ColumnValueRangeMetricResult]

calculate(data: )

class ColumnValueRangeMetricRenderer(color_options: Optional[] = None)

Bases:

color_options :

class ColumnValueRangeMetricResult(column_name: str, left: Union[float, int], right: Union[float, int], current: ValuesInRangeStat, current_distribution: , reference: Optional[ValuesInRangeStat] = None, reference_distribution: Optional[] = None)

current_distribution :

reference_distribution : Optional[] = None

class DataQualityCorrelationMetricsRenderer(color_options: Optional[] = None)

Bases:

color_options :

Bases: [DatasetCorrelationsMetricResult]

calculate(data: )

Bases: [DataQualityStabilityMetricResult]

calculate(data: )

class DataQualityStabilityMetricRenderer(color_options: Optional[] = None)

Bases:

color_options :

ColorOptions
ColorOptions
ColorOptions
ColorOptions
ColorOptions
ColorOptions
ColorOptions
ColorOptions
ColorOptions
ColorOptions
ColorOptions
ColorOptions
Distribution
Distribution
Distribution
Distribution
Distribution
Distribution
Distribution
Distribution
Distribution
Distribution
Distribution
Distribution
ColorOptions
ColorOptions
ColumnCorrelations
ColumnCorrelations
ColumnCorrelations
ColumnCorrelations
MetricRenderer
MetricRenderer
MetricRenderer
MetricRenderer
MetricRenderer
MetricRenderer
MetricRenderer
Metric
InputData
Metric
InputData
Metric
InputData
Metric
InputData
Metric
InputData
Metric
InputData
Metric
InputData