evidently.metrics.data_quality
Last updated
Last updated
Bases: [ColumnCorrelationsMetricResult
]
Calculates correlations between the selected column and all the other columns. In the current and reference (if presented) datasets
column_name : str
calculate(data: )
Bases:
color_options :
render_html(obj: ColumnCorrelationsMetric)
render_json(obj: ColumnCorrelationsMetric)
Bases: object
column_name : str
Calculates distribution for the column
column_name : str
render_html(obj: ColumnDistributionMetric)
render_json(obj: ColumnDistributionMetric)
Bases: object
column_name : str
Calculates quantile with specified range
column_name : str
quantile : float
render_html(obj: ColumnQuantileMetric)
render_json(obj: ColumnQuantileMetric)
Bases: object
column_name : str
current : float
quantile : float
reference : Optional[float] = None
Calculates count and shares of values in the predefined values list
column_name : str
values : Optional[list]
render_html(obj: ColumnValueListMetric)
render_json(obj: ColumnValueListMetric)
Bases: object
column_name : str
current : ValueListStat
reference : Optional[ValueListStat] = None
values : List[Any]
Bases: object
number_in_list : int
number_not_in_list : int
rows_count : int
share_in_list : float
share_not_in_list : float
values_in_list : Dict[Any, int]
values_not_in_list : Dict[Any, int]
Calculates count and shares of values in the predefined values range
column_name : str
left : Optional[Union[float, int]]
right : Optional[Union[float, int]]
render_html(obj: ColumnValueRangeMetric)
render_json(obj: ColumnValueRangeMetric)
Bases: object
column_name : str
current : ValuesInRangeStat
left : Union[float, int]
reference : Optional[ValuesInRangeStat] = None
right : Union[float, int]
Bases: object
number_in_range : int
number_not_in_range : int
number_of_values : int
share_in_range : float
share_not_in_range : float
Bases: object
abs_max_correlation : Optional[float] = None
abs_max_features_correlation : Optional[float] = None
abs_max_prediction_features_correlation : Optional[float] = None
abs_max_target_features_correlation : Optional[float] = None
target_prediction_correlation : Optional[float] = None
render_html(obj: DatasetCorrelationsMetric)
render_json(obj: DatasetCorrelationsMetric)
Bases: object
correlation : Dict[str, DataFrame]
stats : Dict[str, CorrelationStats]
Calculate different correlations with target, predictions and features
Bases: object
current : DatasetCorrelation
reference : Optional[DatasetCorrelation]
Calculates stability by target and prediction
render_html(obj: DataQualityStabilityMetric)
render_json(obj: DataQualityStabilityMetric)
Bases: object
number_not_stable_prediction : Optional[int] = None
number_not_stable_target : Optional[int] = None
current : Dict[str, ]
reference : Optional[Dict[str, ]] = None
Bases: [ColumnDistributionMetricResult
]
calculate(data: )
Bases:
color_options :
current :
reference : Optional[] = None
Bases: [ColumnQuantileMetricResult
]
calculate(data: )
Bases:
color_options :
current_distribution :
reference_distribution : Optional[] = None
Bases: [ColumnValueListMetricResult
]
calculate(data: )
Bases:
color_options :
Bases: [ColumnValueRangeMetricResult
]
calculate(data: )
Bases:
color_options :
current_distribution :
reference_distribution : Optional[] = None
Bases:
color_options :
Bases: [DatasetCorrelationsMetricResult
]
calculate(data: )
Bases: [DataQualityStabilityMetricResult
]
calculate(data: )
Bases:
color_options :