evidently.metrics.classification_performance
Last updated
Last updated
Bases: [TResult
], ABC
k : Optional[Union[float, int]]
probas_threshold : Optional[float]
get_target_prediction_data(data: DataFrame, column_mapping: )
Bases: [ClassificationClassBalanceResult
]
render_html(obj: ClassificationClassBalance)
render_json(obj: ClassificationClassBalance)
Bases: object
plot_data : Dict[str, int]
render_html(obj: ClassificationClassSeparationPlot)
render_json(obj: ClassificationClassSeparationPlot)
Bases: object
current_plot : Optional[DataFrame] = None
reference_plot : Optional[DataFrame] = None
target_name : str
Bases: ThresholdClassificationMetric
[ClassificationDummyMetricResults
]
quality_metric : ClassificationQualityMetric
render_html(obj: ClassificationDummyMetric)
render_json(obj: ClassificationDummyMetric)
Bases: object
metrics_matrix : dict
Bases: ThresholdClassificationMetric
[ClassificationQualityMetricResult
]
confusion_matrix_metric : ClassificationConfusionMatrix
render_html(obj: ClassificationQualityMetric)
render_json(obj: ClassificationQualityMetric)
Bases: object
target_name : str
Bases: ThresholdClassificationMetric
[ClassificationConfusionMatrixResult
]
k : Optional[Union[float, int]]
probas_threshold : Optional[float]
render_html(obj: ClassificationConfusionMatrix)
render_json(obj: ClassificationConfusionMatrix)
Bases: object
render_html(obj: ClassificationPRCurve)
render_json(obj: ClassificationPRCurve)
Bases: object
current_pr_curve : Optional[dict] = None
reference_pr_curve : Optional[dict] = None
render_html(obj: ClassificationPRTable)
render_json(obj: ClassificationPRTable)
Bases: object
current_pr_table : Optional[dict] = None
reference_pr_table : Optional[dict] = None
static get_distribution(dataset: DataFrame, target_name: str, prediction_labels: Iterable)
render_html(obj: ClassificationProbDistribution)
render_json(obj: ClassificationProbDistribution)
Bases: object
current_distribution : Optional[Dict[str, list]]
reference_distribution : Optional[Dict[str, list]]
Bases: ThresholdClassificationMetric
[ClassificationQualityByClassResult
]
k : Optional[Union[float, int]]
probas_threshold : Optional[float]
render_html(obj: ClassificationQualityByClass)
render_json(obj: ClassificationQualityByClass)
Bases: object
current_metrics : dict
current_roc_aucs : Optional[list]
reference_metrics : Optional[dict]
reference_roc_aucs : Optional[dict]
columns : Optional[List[str]]
render_html(obj: ClassificationQualityByFeatureTable)
render_json(obj: ClassificationQualityByFeatureTable)
Bases: object
columns : List[str]
current_plot_data : DataFrame
reference_plot_data : Optional[DataFrame]
target_name : str
render_html(obj: ClassificationRocCurve)
render_json(obj: ClassificationRocCurve)
Bases: object
current_roc_curve : Optional[dict] = None
reference_roc_curve : Optional[dict] = None
calculate(data: )
Bases:
color_options :
Bases: [ClassificationClassSeparationPlotResults
]
calculate(data: )
Bases:
color_options :
calculate(data: )
correction_for_threshold(dummy_results: , threshold: float, target: Series, labels: list, probas_shape: tuple)
Bases:
color_options :
by_reference_dummy : Optional[]
dummy :
model_quality : Optional[]
calculate(data: )
Bases:
color_options :
current :
reference : Optional[]
calculate(data: )
Bases:
color_options :
current_matrix :
reference_matrix : Optional[]
Bases: [ClassificationPRCurveResults
]
calculate(data: )
calculate_metrics(target_data: Series, prediction: )
Bases:
color_options :
Bases: [ClassificationPRTableResults
]
calculate(data: )
calculate_metrics(target_data: Series, prediction: )
Bases:
color_options :
Bases: [ClassificationProbDistributionResults
]
calculate(data: )
Bases:
color_options :
calculate(data: )
Bases:
color_options :
columns :
Bases: [ClassificationQualityByFeatureTableResults
]
calculate(data: )
Bases:
color_options :
curr_predictions :
ref_predictions : Optional[]
Bases: [ClassificationRocCurveResults
]
calculate(data: )
calculate_metrics(target_data: Series, prediction: )
Bases:
color_options :