evidently.metric_preset
Last updated
Last updated
Bases: MetricPreset
Metrics preset for classification performance.
Contains metrics:
ClassificationQualityMetric
ClassificationClassBalance
ClassificationConfusionMatrix
ClassificationQualityByClass
columns : Optional[List[str]]
k : Optional[int]
probas_threshold : Optional[float]
generate_metrics(data: , columns: )
Bases: MetricPreset
Metric Preset for Data Drift analysis.
Contains metrics:
DatasetDriftMetric
DataDriftTable
cat_stattest_threshold : Optional[float]
columns : Optional[List[str]]
drift_share : float
num_stattest_threshold : Optional[float]
per_column_stattest_threshold : Optional[Dict[str, float]]
stattest_threshold : Optional[float]
Bases: MetricPreset
Metric preset for Data Quality analysis.
Contains metrics:
DatasetSummaryMetric
ColumnSummaryMetric for each column
DatasetMissingValuesMetric
DatasetCorrelationsMetric
Parameters
columns
– list of columns for analysis.
columns : Optional[List[str]]
Bases: MetricPreset
Metric preset for Regression performance analysis.
Contains metrics:
RegressionQualityMetric
RegressionPredictedVsActualScatter
RegressionPredictedVsActualPlot
RegressionErrorPlot
RegressionAbsPercentageErrorPlot
RegressionErrorDistribution
RegressionErrorNormality
RegressionTopErrorMetric
RegressionErrorBiasTable
columns : Optional[List[str]]
Bases: MetricPreset
Metric preset for Target Drift analysis.
Contains metrics:
ColumnDriftMetric - for target and prediction if present in datasets.
ColumnValuePlot - if task is regression.
ColumnCorrelationsMetric - for target and prediction if present in datasets.
TargetByFeaturesTable
cat_stattest_threshold : Optional[float]
columns : Optional[List[str]]
num_stattest_threshold : Optional[float]
per_column_stattest_threshold : Optional[Dict[str, float]]
stattest_threshold : Optional[float]
Bases: MetricPreset
Metrics preset for classification performance.
Contains metrics:
ClassificationQualityMetric
ClassificationClassBalance
ClassificationConfusionMatrix
ClassificationQualityByClass
columns : Optional[List[str]]
k : Optional[int]
probas_threshold : Optional[float]
Bases: MetricPreset
Metric Preset for Data Drift analysis.
Contains metrics:
DatasetDriftMetric
DataDriftTable
cat_stattest_threshold : Optional[float]
columns : Optional[List[str]]
drift_share : float
num_stattest_threshold : Optional[float]
per_column_stattest_threshold : Optional[Dict[str, float]]
stattest_threshold : Optional[float]
Bases: MetricPreset
Metric preset for Data Quality analysis.
Contains metrics:
DatasetSummaryMetric
ColumnSummaryMetric for each column
DatasetMissingValuesMetric
DatasetCorrelationsMetric
Parameters
columns
– list of columns for analysis.
columns : Optional[List[str]]
Bases: object
Base class for metric presets
Bases: MetricPreset
Metric preset for Regression performance analysis.
Contains metrics:
RegressionQualityMetric
RegressionPredictedVsActualScatter
RegressionPredictedVsActualPlot
RegressionErrorPlot
RegressionAbsPercentageErrorPlot
RegressionErrorDistribution
RegressionErrorNormality
RegressionTopErrorMetric
RegressionErrorBiasTable
columns : Optional[List[str]]
Bases: MetricPreset
Metric preset for Target Drift analysis.
Contains metrics:
ColumnDriftMetric - for target and prediction if present in datasets.
ColumnValuePlot - if task is regression.
ColumnCorrelationsMetric - for target and prediction if present in datasets.
TargetByFeaturesTable
cat_stattest_threshold : Optional[float]
columns : Optional[List[str]]
num_stattest_threshold : Optional[float]
per_column_stattest_threshold : Optional[Dict[str, float]]
stattest_threshold : Optional[float]
cat_stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]
num_stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]
per_column_stattest : Optional[Dict[str, Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]]
stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]
generate_metrics(data: , columns: )
generate_metrics(data: , columns: )
generate_metrics(data: , columns: )
cat_stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]
num_stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]
per_column_stattest : Optional[Dict[str, Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]]
stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]
generate_metrics(data: , columns: )
generate_metrics(data: , columns: )
cat_stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]
num_stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]
per_column_stattest : Optional[Dict[str, Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]]
stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]
generate_metrics(data: , columns: )
generate_metrics(data: , columns: )
abstract generate_metrics(data: , columns: )
generate_metrics(data: , columns: )
cat_stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]
num_stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]
per_column_stattest : Optional[Dict[str, Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]]
stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], ]]
generate_metrics(data: , columns: )