LogoLogo
HomeBlogGitHub
latest
latest
  • New DOCS
  • What is Evidently?
  • Get Started
    • Evidently Cloud
      • Quickstart - LLM tracing
      • Quickstart - LLM evaluations
      • Quickstart - Data and ML checks
      • Quickstart - No-code evaluations
    • Evidently OSS
      • OSS Quickstart - LLM evals
      • OSS Quickstart - Data and ML monitoring
  • Presets
    • All Presets
    • Data Drift
    • Data Quality
    • Target Drift
    • Regression Performance
    • Classification Performance
    • NoTargetPerformance
    • Text Evals
    • Recommender System
  • Tutorials and Examples
    • All Tutorials
    • Tutorial - Tracing
    • Tutorial - Reports and Tests
    • Tutorial - Data & ML Monitoring
    • Tutorial - LLM Evaluation
    • Self-host ML Monitoring
    • LLM as a judge
    • LLM Regression Testing
  • Setup
    • Installation
    • Evidently Cloud
    • Self-hosting
  • User Guide
    • 📂Projects
      • Projects overview
      • Manage Projects
    • 📶Tracing
      • Tracing overview
      • Set up tracing
    • 🔢Input data
      • Input data overview
      • Column mapping
      • Data for Classification
      • Data for Recommendations
      • Load data to pandas
    • 🚦Tests and Reports
      • Reports and Tests Overview
      • Get a Report
      • Run a Test Suite
      • Evaluate Text Data
      • Output formats
      • Generate multiple Tests or Metrics
      • Run Evidently on Spark
    • 📊Evaluations
      • Evaluations overview
      • Generate snapshots
      • Run no code evals
    • 🔎Monitoring
      • Monitoring overview
      • Batch monitoring
      • Collector service
      • Scheduled evaluations
      • Send alerts
    • 📈Dashboard
      • Dashboard overview
      • Pre-built Tabs
      • Panel types
      • Adding Panels
    • 📚Datasets
      • Datasets overview
      • Work with Datasets
    • 🛠️Customization
      • Data drift parameters
      • Embeddings drift parameters
      • Feature importance in data drift
      • Text evals with LLM-as-judge
      • Text evals with HuggingFace
      • Add a custom text descriptor
      • Add a custom drift method
      • Add a custom Metric or Test
      • Customize JSON output
      • Show raw data in Reports
      • Add text comments to Reports
      • Change color schema
    • How-to guides
  • Reference
    • All tests
    • All metrics
      • Ranking metrics
    • Data drift algorithm
    • API Reference
      • evidently.calculations
        • evidently.calculations.stattests
      • evidently.metrics
        • evidently.metrics.classification_performance
        • evidently.metrics.data_drift
        • evidently.metrics.data_integrity
        • evidently.metrics.data_quality
        • evidently.metrics.regression_performance
      • evidently.metric_preset
      • evidently.options
      • evidently.pipeline
      • evidently.renderers
      • evidently.report
      • evidently.suite
      • evidently.test_preset
      • evidently.test_suite
      • evidently.tests
      • evidently.utils
  • Integrations
    • Integrations
      • Evidently integrations
      • Notebook environments
      • Evidently and Airflow
      • Evidently and MLflow
      • Evidently and DVCLive
      • Evidently and Metaflow
  • SUPPORT
    • Migration
    • Contact
    • F.A.Q.
    • Telemetry
    • Changelog
  • GitHub Page
  • Website
Powered by GitBook
On this page
  • 1. Set up Evidently Cloud
  • 2. Install the Python library
  • 3. Create a new Project
  • 4. Import a toy dataset
  • 5. Run an evaluation
  • 6. View the Report
  • 7. Add a monitoring panel
  • Want to see more?
  1. Get Started
  2. Evidently Cloud

Quickstart - Data and ML checks

ML Monitoring “Hello world.” From data to dashboard in a couple of minutes.

PreviousQuickstart - LLM evaluationsNextQuickstart - No-code evaluations

Last updated 2 months ago

You are looking at the old Evidently documentation: this API is available with versions 0.6.7 or lower. Check the newer version .

1. Set up Evidently Cloud

Set up your Evidently Cloud workspace:

  • Sign up. If you do not have one yet, sign up for a free .

  • Create an Organization when you log in for the first time. Get an ID of your organization. .

  • Get your API token. Click the Key icon in the left menu. Generate and save the token. ().

You can now go to your Python environment.

2. Install the Python library

Install the Evidently Python library. You can run this example in Colab or another Python environment.

!pip install evidently

Import the components to work with the dataset and send the metrics.

import pandas as pd
from sklearn import datasets

from evidently.ui.workspace.cloud import CloudWorkspace
from evidently.report import Report
from evidently.metric_preset import DataQualityPreset

3. Create a new Project

Connect to Evidently Cloud using your access token.

ws = CloudWorkspace(token="YOUR_TOKEN_HERE", url="https://app.evidently.cloud")

Create a new Project inside your Organization. Pass the org_id.

project = ws.create_project("My test project", org_id="YOUR_ORG_ID")
project.description = "My project description"
project.save()

4. Import a toy dataset

Import the demo "adult" dataset as a pandas DataFrame.

adult_data = datasets.fetch_openml(name="adult", version=2, as_frame="auto")
adult = adult_data.frame

5. Run an evaluation

Run a Data Quality Report and upload it to the Project.

data_report = Report(
       metrics=[
           DataQualityPreset(),
       ],
    )
data_report.run(reference_data=None, current_data=adult)
ws.add_report(project.id, data_report)

We call each such evaluation result a snapshot.

6. View the Report

Visit Evidently Cloud, open your Project, and navigate to the "Report" tab to see the data stats.

7. Add a monitoring panel

Go to the "Dashboard" tab and enter the "Edit" mode. Add a new tab, and select the "Data quality" template.

You'll see a set of panels with a single data point. As you send more snapshots, you can track trends and set up alerts. You can choose from 100+ metrics and tests on data quality, data drift, ML quality (regression, classification, ranking, recsys), LLM quality and text data, and add your own metrics.

Want to see more?

Check out a more in-depth tutorial to learn the key workflows:

Working with LLMs? See a Quickstart:

Need help? Ask in our .

here
Evidently Cloud account
Organizations page
Token page
Tutorial - Data & ML Monitoring
Quickstart - LLM evaluations
Discord community